کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
387292 | 660898 | 2007 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Focusing on non-respondents: Response modeling with novelty detectors
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper proposes to use novelty detection approaches to alleviate the class imbalance in response modeling. Two novelty detectors, one-class support vector machine (1-SVM) and learning vector quantization for novelty detection (LVQ-ND), are compared with binary classifiers for a catalogue mailing task with DMEF4 dataset. The novelty detectors are more accurate and more profitable when the response rate is low. When the response rate is relatively high, however, a support vector machine model with modified misclassification costs performs the best. In addition, the novelty detectors turn in higher profits with a low mailing cost, while the SVM model is the most profitable with a high mailing cost.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 33, Issue 2, August 2007, Pages 522–530
Journal: Expert Systems with Applications - Volume 33, Issue 2, August 2007, Pages 522–530
نویسندگان
Hyoung-joo Lee, Sungzoon Cho,