کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
387353 660901 2010 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Power load forecasts based on hybrid PSO with Gaussian and adaptive mutation and Wv-SVM
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Power load forecasts based on hybrid PSO with Gaussian and adaptive mutation and Wv-SVM
چکیده انگلیسی

This paper presents a new load forecasting model based on hybrid particle swarm optimization with Gaussian and adaptive mutation (HAGPSO) and wavelet v-support vector machine (Wv-SVM). Firstly, it is proved that mother wavelet function can build a set of complete base through horizontal floating and form the wavelet kernel function. And then, Wv-SVM with wavelet kernel function is proposed in this paper. Secondly, aiming to the disadvantage of standard PSO, HAGPSO is proposed to seek the optimal parameter of Wv-SVM. Finally, the load forecasting model based on HAGPSO and Wv-SVM is proposed in this paper. The results of application in load forecasts show the proposed model is effective and feasible.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 37, Issue 1, January 2010, Pages 194–201
نویسندگان
,