کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
387353 | 660901 | 2010 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Power load forecasts based on hybrid PSO with Gaussian and adaptive mutation and Wv-SVM
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents a new load forecasting model based on hybrid particle swarm optimization with Gaussian and adaptive mutation (HAGPSO) and wavelet v-support vector machine (Wv-SVM). Firstly, it is proved that mother wavelet function can build a set of complete base through horizontal floating and form the wavelet kernel function. And then, Wv-SVM with wavelet kernel function is proposed in this paper. Secondly, aiming to the disadvantage of standard PSO, HAGPSO is proposed to seek the optimal parameter of Wv-SVM. Finally, the load forecasting model based on HAGPSO and Wv-SVM is proposed in this paper. The results of application in load forecasts show the proposed model is effective and feasible.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 37, Issue 1, January 2010, Pages 194–201
Journal: Expert Systems with Applications - Volume 37, Issue 1, January 2010, Pages 194–201
نویسندگان
Qi Wu,