کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
387456 660902 2009 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A hierarchical evolutionary algorithm for automatic medical image segmentation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A hierarchical evolutionary algorithm for automatic medical image segmentation
چکیده انگلیسی

Image segmentation denotes a process of partitioning an image into distinct regions. A large variety of different segmentation approaches for images have been developed. Among them, the clustering methods have been extensively investigated and used. In this paper, a clustering based approach using a hierarchical evolutionary algorithm (HEA) is proposed for medical image segmentation. The HEA can be viewed as a variant of conventional genetic algorithms. By means of a hierarchical structure in the chromosome, the proposed approach can automatically classify the image into appropriate classes and avoid the difficulty of searching for the proper number of classes. The experimental results indicate that the proposed approach can produce more continuous and smoother segmentation results in comparison with four existing methods, competitive Hopfield neural networks (CHNN), dynamic thresholding, k-means, and fuzzy c-means methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 36, Issue 1, January 2009, Pages 248–259
نویسندگان
, ,