کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
387596 660905 2009 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Short-term fault prediction based on support vector machines with parameter optimization by evolution strategy
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Short-term fault prediction based on support vector machines with parameter optimization by evolution strategy
چکیده انگلیسی

Support vector machines (SVMs) are the effective machine-learning methods based on the structural risk minimization (SRM) principle, which is an approach to minimize the upper bound risk functional related to the generalization performance. The parameter selection is an important factor that impacts the performance of SVMs. Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) is an evolutionary optimization strategy, which is used to optimize the parameters of SVMs in this paper. Compared with the traditional SVMs, the optimal SVMs using CMA-ES have more accuracy in predicting the Lorenz signal. The industry case illustrates that the proposed method is very successfully in forecasting the short-term fault of large machinery.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 36, Issue 10, December 2009, Pages 12383–12391
نویسندگان
, ,