کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
387815 | 660910 | 2012 | 11 صفحه PDF | دانلود رایگان |

In this paper we propose a hybrid methodology to design morphological-rank-linear (MRL) perceptrons in the problem of software development cost estimation (SDCE). In this methodology, we use a modified genetic algorithm (MGA) to optimize the parameters of the MRL perceptron, as well as to select an optimal input feature subset of the used databases, aiming at a higher accuracy level for SDCE problems. Besides, for each individual of MGA, a gradient steepest descent method is used to further improve the MRL perceptron parameters supplied by MGA. Finally, we conduct an experimental analysis with the proposed methodology using six well-known benchmark databases of software projects, where two relevant performance metrics and a fitness function are used to assess the performance of the proposed methodology, which is compared to classical machine learning models presented in the literature.
Journal: Expert Systems with Applications - Volume 39, Issue 6, May 2012, Pages 6129–6139