کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
388010 660915 2009 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Artificial neural network vs. nonlinear regression for gold content estimation in pyrometallurgy
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Artificial neural network vs. nonlinear regression for gold content estimation in pyrometallurgy
چکیده انگلیسی

Pyrometallurgy is often used in the industrial process for treating gold-bearing slime. Slag compositions have remarkable influences on gold recovery and gold content in slag. In this paper, the relationships between the slag compositions in the soda–borax–silica glass-salt system and the gold content in the slag are investigated by using nonlinear regression and artificial neural network. A neural network model for estimating the gold contents of different slag compositions is presented, including the neural network type, structure and its learning algorithms. The study indicates that the three-layer back propagation neural network model can be applied to estimate gold content in the slag. Compared with the traditional regression methods, the neural network has many advantages.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 36, Issue 7, September 2009, Pages 10397–10400
نویسندگان
, , ,