کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
388246 660920 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Augmenting learning function to Bayesian network inferences with maximum likelihood parameters
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Augmenting learning function to Bayesian network inferences with maximum likelihood parameters
چکیده انگلیسی

Computing the posterior probability distribution for a set of query variables by search result is an important task of inferences with a Bayesian network. Starting from real applications, it is also necessary to make inferences when the evidence is not contained in training data. In this paper, we are to augment the learning function to Bayesian network inferences, and extend the classical “search”-based inferences to “search + learning”-based inferences. Based on the support vector machine, we use a class of hyperplanes to construct the hypothesis space. Then we use the method of solving an optimal hyperplane to find a maximum likelihood hypothesis for the value not contained in training data. Further, we give a convergent Gibbs sampling algorithm for approximate probabilistic inference with the presence of maximum likelihood parameters. Preliminary experiments show the feasibility of our proposed methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 36, Issue 2, Part 2, March 2009, Pages 3497–3504
نویسندگان
, , ,