کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
388363 660922 2007 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy
چکیده انگلیسی

Two parameters, C and σ, must be carefully predetermined in establishing an efficient support vector machine (SVM) model. Therefore, the purpose of this study is to develop a genetic-based SVM (GA-SVM) model that can automatically determine the optimal parameters, C and σ, of SVM with the highest predictive accuracy and generalization ability simultaneously. This paper pioneered on employing a real-valued genetic algorithm (GA) to optimize the parameters of SVM for predicting bankruptcy. Additionally, the proposed GA-SVM model was tested on the prediction of financial crisis in Taiwan to compare the accuracy of the proposed GA-SVM model with that of other models in multivariate statistics (DA, logit, and probit) and artificial intelligence (NN and SVM). Experimental results show that the GA-SVM model performs the best predictive accuracy, implying that integrating the RGA with traditional SVM model is very successful.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 32, Issue 2, February 2007, Pages 397–408
نویسندگان
, , , ,