کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
388493 660926 2011 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Intelligent identification and control using improved fuzzy particle swarm optimization
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Intelligent identification and control using improved fuzzy particle swarm optimization
چکیده انگلیسی

This paper presents a novel improved fuzzy particle swarm optimization (IFPSO) algorithm to the intelligent identification and control of a dynamic system. The proposed algorithm estimates optimally the parameters of system and controller by minimizing the mean of squared errors. The particle swarm optimization is enhanced intelligently by using a fuzzy inertia weight to rationally balance the global and local exploitation abilities. In the proposed IFPSO, every particle dynamically adjusts inertia weight according to particles best memories using a nonlinear fuzzy model. As a result, the IFPSO algorithm has a faster convergence speed and a higher accuracy. The performance of IFPSO algorithm is compared with advanced algorithms such as Real-Coded Genetic Algorithm (RCGA), Linearly Decreasing Inertia Weight PSO (LDWPSO) and Fuzzy PSO (FPSO) in terms of parameter accuracy and convergence speed. Simulation results demonstrate the effectiveness of the proposed algorithm.

Research highlights
► In this paper, a novel Improved Fuzzy Particle Swarm Optimization (IFPSO) is proposed to increase the convergence speed and accuracy to save tremendous computation time. The proposed algorithm estimates optimally the parameters of system and controller by minimizing the mean of squared errors. The particle swarm optimization is enhanced intelligently by using a fuzzy inertia weight to rationally balance the global and local exploitation abilities. In the proposed IFPSO, every particle dynamically adjusts inertia weight according to particles best memories using a nonlinear fuzzy model. Simulation results demonstrate the effectiveness of the proposed algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 38, Issue 10, 15 September 2011, Pages 12312–12317
نویسندگان
, ,