کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
388797 660941 2009 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Genetic algorithm-based clustering approach for k-anonymization
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Genetic algorithm-based clustering approach for k-anonymization
چکیده انگلیسی

k  -Anonymity has been widely adopted as a model for protecting public released microdata from individual identification. This model requires that each record must be identical to at least k-1k-1 other records in the anonymized dataset with respect to a set of privacy-related attributes. Although anonymizing the original dataset to satisfy the requirement of k-anonymity is easy, the anonymized dataset must preserve as much information as possible of the original dataset. Clustering techniques have recently been successfully adapted for k-anonymization. This work proposes a novel genetic algorithm-based clustering approach for k-anonymization. The proposed approach adopts various heuristics to select genes for crossover operations. Experimental results show that this approach can further reduce the information loss caused by traditional clustering-based k-anonymization techniques.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 36, Issue 6, August 2009, Pages 9784–9792
نویسندگان
, ,