کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
388837 660941 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Support vector regression and multilayer feed forward neural networks for non-exercise prediction of VO2max
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Support vector regression and multilayer feed forward neural networks for non-exercise prediction of VO2max
چکیده انگلیسی

The purpose of this study is to develop non-exercise (N-Ex) VO2max prediction models by using support vector regression (SVR) and multilayer feed forward neural networks (MFFNN). VO2max values of 100 subjects (50 males and 50 females) are measured using a maximal graded exercise test. The variables; gender, age, body mass index (BMI), perceived functional ability (PFA) to walk, jog or run given distances and current physical activity rating (PA-R) are used to build two N-Ex prediction models. Using 10-fold cross validation on the dataset, standard error of estimates (SEE) and multiple correlation coefficients (R) of both models are calculated. The MFFNN-based model yields lower SEE (3.23 ml kg−1 min−1) whereas the SVR-based model yields higher R (0.93). Compared with the results of the other N-Ex prediction models in literature that are developed using multiple linear regression analysis, the reported values of SEE and R in this study are considerably more accurate. Therefore, the results suggest that SVR-based and MFFNN-based N-Ex prediction models can be valid predictors of VO2max for heterogeneous samples.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 36, Issue 6, August 2009, Pages 10112–10119
نویسندگان
, , , ,