کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
388864 660946 2008 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Particle swarm optimization for pap-smear diagnosis
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Particle swarm optimization for pap-smear diagnosis
چکیده انگلیسی

The term pap-smear refers to samples of human cells stained by the so-called Papanicolaou method. The purpose of the Papanicolaou method is to diagnose pre-cancerous cell changes before they progress to invasive carcinoma. In this paper, a metaheuristic algorithm is proposed in order to classify the cells. Two databases are used, constructed in different times by expert Medical Doctors, consisting of 917 and 500 images of pap-smear cells, respectively. Each cell is described by 20 numerical features and the cells fall into seven classes but a minimal requirement is to separate normal from abnormal cells which is a two-class problem. For finding the best possible performing feature subset, an effective particle swarm optimization scheme is proposed. This algorithmic scheme is combined with a number of nearest neighbor based classifiers. Results show that classification accuracy generally outperforms other previously applied intelligent approaches.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 35, Issue 4, November 2008, Pages 1645–1656
نویسندگان
, , ,