کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
389358 661131 2014 33 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Inference using compiled min-based possibilistic causal networks in the presence of interventions
ترجمه فارسی عنوان
استنتاج با استفاده از شبکه های علیت احتمالی مبتنی بر مشتق شده در حضور مداخلات
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Qualitative possibilistic causal networks are important tools for handling uncertain information in the possibility theory framework. Contrary to possibilistic networks (Ayachi et al., 2011 [2], ), the compilation principle has not been exploited to ensure causal reasoning in the possibility theory framework. This paper proposes mutilated-based inference approaches and augmented-based inference approaches for qualitative possibilistic causal networks using two compilation methods. The first one is a possibilistic adaptation of the probabilistic inference approach (Darwiche, 2002 [13], ) and the second is a purely possibilistic approach based on the transformation of the graphical-based representation into a logic-based one (Benferhat et al., 2002 [3]). Each of the proposed methods encodes the network or the possibilistic knowledge base into a propositional base and compiles this output in order to efficiently compute the effect of both observations and interventions. This paper also reports on a set of experimental results showing cases in which augmentation outperforms mutilation under compilation and vice versa.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fuzzy Sets and Systems - Volume 239, 16 March 2014, Pages 104-136