کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
389689 | 661166 | 2013 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Clustering documents with labeled and unlabeled documents using fuzzy semi-Kmeans
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
While focusing on document clustering, this work presents a fuzzy semi-supervised clustering algorithm called fuzzy semi-Kmeans. The fuzzy semi-Kmeans is an extension of K-means clustering model, and it is inspired by an EM algorithm and a Gaussian mixture model. Additionally, the fuzzy semi-Kmeans provides the flexibility to employ different fuzzy membership functions to measure the distance between data. This work employs Gaussian weighting function to conduct experiments, but cosine similarity function can be used as well. This work conducts experiments on three data sets and compares fuzzy semi-Kmeans with several methods. The experimental results indicate that fuzzy semi-Kmeans can generally outperform the other methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fuzzy Sets and Systems - Volume 221, 16 June 2013, Pages 48-64
Journal: Fuzzy Sets and Systems - Volume 221, 16 June 2013, Pages 48-64