کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
389953 661197 2013 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Algebraic, metric and probabilistic properties of convex combinations based on the t-normed extension principle: the strong law of large numbers
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Algebraic, metric and probabilistic properties of convex combinations based on the t-normed extension principle: the strong law of large numbers
چکیده انگلیسی

Consider the Strong Law of Large Numbers for t-normed averages of fuzzy random variables in the uniform metric d∞. That probabilistic property is known to hold when the t-norm is the minimum and to fail when the t-norm is the product. We prove that it is characterized by an algebraic property of the t-norm (that of being eventually idempotent) and by a metric property of the space of fuzzy sets (that it becomes a convex combination space). We show that the equivalence holds not only for Euclidean or Banach spaces, but in the more general setting of convex combination spaces.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fuzzy Sets and Systems - Volume 223, 16 July 2013, Pages 1-25