کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
390232 661232 2010 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fuzzy K-means clustering algorithms for interval-valued data based on adaptive quadratic distances
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Fuzzy K-means clustering algorithms for interval-valued data based on adaptive quadratic distances
چکیده انگلیسی

This paper presents partitioning fuzzy K-means clustering models for interval-valued data based on suitable adaptive quadratic distances. These models furnish a fuzzy partition and a prototype for each cluster by optimizing an adequacy criterion that measures the fit between the fuzzy clusters and their representatives. These adaptive quadratic distances change at each algorithm iteration and can be either the same for all clusters or different from one cluster to another. Moreover, additional interpretation tools for individual fuzzy clusters of interval-valued data, suitable to these fuzzy clustering models, are also presented. Experiments with some interval-valued data sets demonstrate the usefulness of these fuzzy clustering models and the merit of the individual fuzzy cluster interpretation tools.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fuzzy Sets and Systems - Volume 161, Issue 23, 1 December 2010, Pages 2978-2999