کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
390662 661287 2008 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Kernelized fuzzy attribute C-means clustering algorithm
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Kernelized fuzzy attribute C-means clustering algorithm
چکیده انگلیسی

A novel kernelized fuzzy attribute C-means clustering algorithm is proposed in this paper. Since attribute means clustering algorithm is an extension of fuzzy C-means algorithm with weighting exponent m=2, and fuzzy attribute C-means clustering is a general type of attribute C-means clustering with weighting exponent m>1, we modify the distance in fuzzy attribute C-means clustering algorithm with kernel-induced distance, and obtain kernelized fuzzy attribute C-means clustering algorithm. Kernelized fuzzy attribute C-means clustering algorithm is a natural generalization of kernelized fuzzy C-means algorithm with stable function. Experimental results on standard Iris database and tumor/normal gene chip expression data demonstrate that kernelized fuzzy attribute C-means clustering algorithm with Gaussian radial basis kernel function and Cauchy stable function is more effective and robust than fuzzy C-means, fuzzy attribute C-means clustering and kernelized fuzzy C-means as well.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fuzzy Sets and Systems - Volume 159, Issue 18, 16 September 2008, Pages 2428-2445