کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
390778 661301 2010 37 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Myhill–Nerode type theory for fuzzy languages and automata
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Myhill–Nerode type theory for fuzzy languages and automata
چکیده انگلیسی

The Myhill–Nerode theory is a branch of the algebraic theory of languages and automata in which formal languages and deterministic automata are studied through right congruences and congruences on a free monoid. In this paper we develop a general Myhill–Nerode type theory for fuzzy languages with membership values in an arbitrary set with two distinguished elements 0 and 1, which are needed to take crisp languages in consideration. We establish connections between extensionality of fuzzy languages w.r.t. right congruences and congruences on a free monoid and recognition of fuzzy languages by deterministic automata and monoids, and we prove the Myhill–Nerode type theorem for fuzzy languages. We also prove that each fuzzy language possess a minimal deterministic automaton recognizing it, we give a construction of this automaton using the concept of a derivative automaton of a fuzzy language and we give a method for minimization of deterministic fuzzy recognizers. In the second part of the paper we introduce and study Nerode's and Myhill's automata assigned to a fuzzy automaton with membership values in a complete residuated lattice. The obtained results establish nice relationships between fuzzy languages, fuzzy automata and deterministic automata.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fuzzy Sets and Systems - Volume 161, Issue 9, 1 May 2010, Pages 1288-1324