کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
390790 661302 2006 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Support vector interval regression machine for crisp input and output data
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Support vector interval regression machine for crisp input and output data
چکیده انگلیسی

Support vector regression (SVR) has been very successful in function estimation problems for crisp data. In this paper, we propose a robust method to evaluate interval regression models for crisp input and output data combining the possibility estimation formulation integrating the property of central tendency with the principle of standard SVR. The proposed method is robust in the sense that outliers do not affect the resulting interval regression. Furthermore, the proposed method is model-free method, since we do not have to assume the underlying model function for interval nonlinear regression model with crisp input and output. In particular, this method performs better and is conceptually simpler than support vector interval regression networks (SVIRNs) which utilize two radial basis function networks to identify the upper and lower sides of data interval. Five examples are provided to show the validity and applicability of the proposed method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fuzzy Sets and Systems - Volume 157, Issue 8, 16 April 2006, Pages 1114-1125