کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
390900 661315 2007 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Robust asymptotic stability of uncertain fuzzy BAM neural networks with time-varying delays
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Robust asymptotic stability of uncertain fuzzy BAM neural networks with time-varying delays
چکیده انگلیسی

Via ordinary Takagi–Sugeno (TS) fuzzy models, complex nonlinear systems can be represented to a set of linear sub-models by using fuzzy sets and fuzzy reasoning. In this paper, the global asymptotic stability problem of TS fuzzy bi-directional associative memories (BAM) neural networks with time-varying delays and parameter uncertainties is considered. First, the model of TS fuzzy BAM neural networks with time-varying delays and parameter uncertainties is established as a modified TS fuzzy model in which the consequent parts are composed of a set of BAM neural networks with time-varying delays. Secondly, the globally robust asymptotically stable condition is presented in terms of linear matrix inequalities, which can be easily solved by some standard numerical packages. Two numerical examples are also given to validate the theoretical results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fuzzy Sets and Systems - Volume 158, Issue 24, 16 December 2007, Pages 2746-2756