کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
391417 661405 2006 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Quantum learning for neural associative memories
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Quantum learning for neural associative memories
چکیده انگلیسی

Quantum information processing in neural structures results in an exponential increase of patterns storage capacity and can explain the extensive memorization and inferencing capabilities of humans. An example can be found in neural associative memories if the synaptic weights are taken to be fuzzy variables. In that case, the weights’ update is carried out with the use of a fuzzy learning algorithm which satisfies basic postulates of quantum mechanics. The resulting weight matrix can be decomposed into a superposition of associative memories. Thus, the fundamental memory patterns (attractors) can be mapped into different vector spaces which are related to each other via unitary rotations. Quantum learning increases the storage capacity of associative memories by a factor of 2N, where N is the number of neurons.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fuzzy Sets and Systems - Volume 157, Issue 13, 1 July 2006, Pages 1797-1813