کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
39428 45823 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Highly efficient reduction of 4-nitrophenol by heterostructured gold-magnetite nanocatalysts
ترجمه فارسی عنوان
کاهش بسیار کارآمد 4 نیترو فنول توسط نانوکاتالیست های طلای مگنتیت هترواستراتیک
کلمات کلیدی
ساختارهای طلا-مگنتیت، نانوکاتالیزورها، 4-نیتروفنول، بازیافت کاهش
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
چکیده انگلیسی


• The electrons flow from Au seeds to Fe3O4 at the interfaces of heterostructures.
• The reduction of 4-nitrophenol by Au-Fe3O4 follows the Langmuir–Hinshelwood model.
• The rate constant for 4-nitrophenol reduction increases 2.4 times when pH decreases from 9.0 to 5.0.
• The Au-Fe3O4 show good reusability which can be repeatedly used for at least six successive cycles.
• The Au-Fe3O4 heterostructures can serve as an ideal platform for recyclable reduction of 4-nitrophenol.

In this study, the catalytic reduction of 4-nitrophenol by heterostructured Au–Fe3O4 nanocatalysts using NaBH4 as the reducing agent was investigated under various environmental conditions. The electron behaviors at the interface of Au and Fe3O4 nanoparticles were examined to elucidate the reaction mechanisms for 4-nitrophenol reduction. The transmission electron microscopic images show that the average particle size of Au–Fe3O4 heterostructures increases slightly from 14 to 18 nm after phase transfer from oil phase to aqueous solution. The X-ray photoelectron and X-ray absorption near edge spectroscopic results show the electron flow from Au seeds to Fe3O4, resulting in the formation of positively charged Au surface to accelerate the catalytic reduction efficiency and rate of 4-nitrophenol. In addition, the reduction of 4-nitrophenol is a surface-mediated reaction and the catalytic efficiency and rate of 4-nitrophenol is highly dependent on the initial 4-nitrophenol concentration, pH, and reaction temperature. The increase in pH lowers the reduction efficiency and rate of 4-nitrophenol and a 2.4-fold decrease in the pseudo-first-order rate constant is observed when pH increases from 5 to 9. In addition, the Au–Fe3O4 nanocatalysts show a good separation ability and reusability which can be repeatedly applied for complete reduction of 4-nitrophenol for at least six successive cycles without the loss of morphology and saturation magnetization. Results obtained in this study clearly demonstrate that the Au–Fe3O4 heterostructures are excellent nanocatalysts which can be applied in heterogeneous catalysis, water treatment, and green chemistry.

Figure optionsDownload high-quality image (136 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Catalysis A: General - Volume 486, 22 September 2014, Pages 32–41
نویسندگان
, ,