کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
398026 1438434 2016 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Uncertain and negative evidence in continuous time Bayesian networks
ترجمه فارسی عنوان
شواهد نامشخص و منفی در شبکه های بیسیم مداوم است
کلمات کلیدی
شبکه پیوسته بیزی، شواهد نامشخص، شواهد منفی، استنتاج دقیق، نمونه گیری اهمیت
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• Created a taxonomy of discrete-state, continuous-time evidence types.
• Showed generalization and combination relationships between evidence types.
• Demonstrated the effects of evidence types on a real-world network.
• Extended exact and approximate inference for CTBNs to handle new evidence types.
• Demonstrated convergence and scaling of CTBN approximate inference algorithm.

The continuous time Bayesian network (CTBN) enables reasoning about complex systems by representing the system as a factored, finite-state, continuous-time Markov process. Inference over the model incorporates evidence, given as state observations through time. The time dimension introduces several new types of evidence that are not found with static models. In this work, we present a comprehensive look at the types of evidence in CTBNs. Moreover, we define and extend inference to reason under uncertainty in the presence of uncertain evidence, as well as negative evidence, concepts extended to static models but not yet introduced into the CTBN model.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 70, March 2016, Pages 99–122
نویسندگان
, ,