کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
398857 1438746 2014 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Optimal multi-objective distribution system reconfiguration with multi criteria decision making-based solution ranking and enhanced genetic operators
ترجمه فارسی عنوان
تنظیم مجدد سیستم توزیع چند منظوره بهینه با رتبه بندی راه حل مبتنی بر تصمیم گیری چند معیاره و ارتقاء عملکردهای ژنتیکی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• Multi-objective distribution system reconfiguration with conflicting objectives.
• Ranking of multi-objective solutions by using decision-making methods.
• Extension of the crossover operator to analyse multi-objective solutions.
• Adaptation of the mutation operator to address cases with adjacent branches.
• Geometrical metric to represent Pareto fronts (current and complete) similarity.

In electrical distribution system optimisation, the presence of multiple conflicting objectives is effectively addressed by using Pareto front analysis. This paper deals with optimal reconfiguration considering network losses and energy not supplied as multi-objectives. A set of original contributions are provided with reference to the construction and updating of the best-known Pareto front using a genetic algorithm-based solver. The crossover operator is extended to address multi-objective solutions. The mutation operator is extended to handle a broader number of cases. Multi-objective solution ranking is applied by resorting to multi criteria decision making methods during the creation of the offsprings in the crossover operator, as well as to provide an automatic support for the decision maker to identify the preferable solution in the final Pareto front. The proposed approach is applied on two reference test networks, for which the complete Pareto front is calculated from the entire set of multi-objective solutions. The resulting best-known Pareto front is compared with the complete Pareto front using a metric based on geometrical considerations. This comparison framework is helpful to assess the performance of the multi-objective optimisation solvers.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Electrical Power & Energy Systems - Volume 54, January 2014, Pages 255–267
نویسندگان
, , ,