کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
399352 1438724 2016 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multi-Objective Distribution feeder reconfiguration to improve transient stability, and minimize power loss and operation cost using an enhanced evolutionary algorithm at the presence of distributed generations
ترجمه فارسی عنوان
پیکربندی فیدر توزیع چند منظوره برای بهبود ثبات گذرا و به حداقل رساندن کاهش قدرت و هزینه عمل با استفاده از الگوریتم پیشرفته در حضور نسل های توزیع شده
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• This paper proposes a new modified multi-objective evolutionary algorithm.
• The proposed framework is simple and does not have complexities.
• The proposed approach is applied on Distribution feeder reconfiguration (DFR).
• The effectiveness of the proposed method is studied based on a typical 33-bus test system.

This paper proposes a multi-objective evolutionary algorithm method for Distribution feeder reconfiguration (DFR) with distributed generators (DG) in a practical system. Considering the low inertia constant of DG units in order to take the transient stability of DGs into account is one of the major issues in power systems. Especially when the penetration of DGs is low, the impacts of them on the distribution system transient stability may be neglected. However, when the penetration of DG increases, the transient stability of them must be taken into account (more DGs, more transient issues). To this end, the DFR problem has been solve by an enhanced Gravitational Search Algorithm (EGSA) to improve the transient stability index and decrease losses and operation cost in a distribution test system with multiple micro-turbines. The effectiveness of the proposed approach is studied based on a typical 33-bus test system. For getting close to the practical condition and considering the detailed dynamic models of the generators and other electric devices in power system, simulation and programming of this approach are done by the DIgSILENT® Power Factory software.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Electrical Power & Energy Systems - Volume 76, March 2016, Pages 35–43
نویسندگان
, , , , ,