کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
401331 | 675339 | 2016 | 22 صفحه PDF | دانلود رایگان |
Let R be a non-commutative PID finitely generated as a module over its center C . In this paper we give a criterion to decide effectively whether two given elements f,g∈Rf,g∈R are similar, that is, if there exists an isomorphism of left R -modules between R/RfR/Rf and R/RgR/Rg. Since these modules are of finite length, we also consider the more general problem of deciding when two given left R-modules of finite length are isomorphic. This criterion allows the design of algorithms when R is an Ore extension of a skew-field whose center is a commutative polynomial ring. We propose two methods which, essentially, check the equality of the rational canonical forms of certain matrices with coefficients in C associated to each of the modules. These algorithms are based on the fact that, if R is finitely generated as a C-module, then the existence of an isomorphism of R-modules can be reduced to checking the existence of an isomorphism of C-modules. Actually, we prove this result in the realm of non-commutative principal ideal domains, generalizing a version given by Jacobson for some Ore extensions of a skew field by an automorphism.
Journal: Journal of Symbolic Computation - Volume 75, July–August 2016, Pages 149–170