کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
401330 | 675339 | 2016 | 22 صفحه PDF | دانلود رایگان |
In this paper, we present a new algorithm and an experimental implementation for factoring elements in the polynomial nth Weyl algebra, the polynomial n th shift algebra, and ZnZn-graded polynomials in the n th q_-Weyl algebra.The most unexpected result is that this noncommutative problem of factoring partial differential operators can be approached effectively by reducing it to the problem of solving systems of polynomial equations over a commutative ring. In the case where a given polynomial is ZnZn-graded, we can reduce the problem completely to factoring an element in a commutative multivariate polynomial ring.The implementation in Singular is effective on a broad range of polynomials and increases the ability of computer algebra systems to address this important problem. We compare the performance and output of our algorithm with other implementations in major computer algebra systems on nontrivial examples.
Journal: Journal of Symbolic Computation - Volume 75, July–August 2016, Pages 127–148