کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
404091 677386 2014 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An adaptive recurrent neural-network controller using a stabilization matrix and predictive inputs to solve a tracking problem under disturbances
ترجمه فارسی عنوان
یک کنترل کننده عصبی مصنوعی تطبیقی ​​با استفاده از یک ماتریس ثبات و ورودی پیش بینی شده برای حل مشکل ردیابی تحت اختلالات
کلمات کلیدی
مشکل ردیابی ماتریس تثبیت، شبکه عصبی مکرر، شیب انفجاری، کنترل بردار
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

We present a recurrent neural-network (RNN) controller designed to solve the tracking problem for control systems. We demonstrate that a major difficulty in training any RNN is the problem of exploding gradients, and we propose a solution to this in the case of tracking problems, by introducing a stabilization matrix and by using carefully constrained context units. This solution allows us to achieve consistently lower training errors, and hence allows us to more easily introduce adaptive capabilities. The resulting RNN is one that has been trained off-line to be rapidly adaptive to changing plant conditions and changing tracking targets.The case study we use is a renewable-energy generator application; that of producing an efficient controller for a three-phase grid-connected converter. The controller we produce can cope with the random variation of system parameters and fluctuating grid voltages. It produces tracking control with almost instantaneous response to changing reference states, and virtually zero oscillation. This compares very favorably to the classical proportional integrator (PI) controllers, which we show produce a much slower response and settling time. In addition, the RNN we propose exhibits better learning stability and convergence properties, and can exhibit faster adaptation, than has been achieved with adaptive critic designs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 49, January 2014, Pages 74–86
نویسندگان
, , , , ,