کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
404904 | 677462 | 2006 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Invariance priors for Bayesian feed-forward neural networks
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Neural networks (NN) are famous for their advantageous flexibility for problems when there is insufficient knowledge to set up a proper model. On the other hand, this flexibility can cause overfitting and can hamper the generalization of neural networks. Many approaches to regularizing NN have been suggested but most of them are based on ad hoc arguments. Employing the principle of transformation invariance, we derive a general prior in accordance with the Bayesian probability theory for feed-forward networks. An optimal network is determined by Bayesian model comparison, verifying the applicability of this approach. Additionally the prior presented affords cell pruning.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 19, Issue 10, December 2006, Pages 1550–1557
Journal: Neural Networks - Volume 19, Issue 10, December 2006, Pages 1550–1557
نویسندگان
Udo v. Toussaint, Silvio Gori, Volker Dose,