کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4055564 1603851 2016 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Quantifying spinal gait kinematics using an enhanced optical motion capture approach in adolescent idiopathic scoliosis
ترجمه فارسی عنوان
کینماتیک راه رفتن کمرنگ با استفاده از رویکرد جذب حرکتی افزایش یافته در اسکولیوز ایدیوپاتیک نوجوانان
کلمات کلیدی
موضوعات مرتبط
علوم پزشکی و سلامت پزشکی و دندانپزشکی ارتوپدی، پزشکی ورزشی و توانبخشی
چکیده انگلیسی


• We investigated spinal curvature angles during gait in scoliosis patients.
• Several postural differences and altered sagittal motion pattern of thoracic spine.
• Dynamic functionality of spine can be assessed using advanced optical approaches.
• Findings could serve as basis for computer models to simulate internal loading.

Background and purposeThe pathogenesis of adolescent idiopathic scoliosis (AIS) remains poorly understood. Previous research has indicated possible relationships between kinematics of the spine, pelvis and lower extremities during gait and the progression of AIS, but adequate evidence on spinal kinematics is lacking. The aim of this study was to provide a detailed assessment of spinal gait kinematics in AIS patients compared to asymptomatic controls.MethodsFourteen AIS patients and 15 asymptomatic controls were included. Through introducing a previously validated enhanced trunk marker set, sagittal and frontal spinal curvature angles as well as general trunk kinematics were measured during gait using a 12-camera Vicon motion capture system. Group comparisons were conducted using T-tests and relationships between kinematic parameters and severity of scoliosis (Cobb angle) were investigated using regression analyses.ResultsThe sagittal thoracic curvature angle in AIS patients showed on average 10.7° (4.2°, 17.3°) less kyphosis but 4.9° (2.3°, 7.6°) more range of motion (Cobb angle-dependent (R2 = 0.503)). In the frontal plane, thoracic and thoracolumbar/lumbar curvature angles indicated average lateral deviations in AIS patients. General trunk kinematics and spatio-temporal gait parameters, however, did not show any clinically relevant differences between the groups.ConclusionsThis demonstrates that the dynamic functionality of the scoliotic spine can be assessed using advanced non-invasive optical approaches and that these should become standard in clinical gait analysis. Furthermore, curvature angle data might be used to drive sophisticated computer simulation models in order to gain an insight into the dynamic loading behavior of the scoliotic spine during gait.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Gait & Posture - Volume 44, February 2016, Pages 231–237
نویسندگان
, , , , , , ,