کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
405874 678041 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Heterogeneous discriminant analysis for cross-view action recognition
ترجمه فارسی عنوان
تجزیه و تحلیل غیر هنجار برای تشخیص عمل متقابل
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

We propose an approach of cross-view action recognition, in which the samples from different views are represented by features with different dimensions. Inspired by linear discriminant analysis (LDA), we introduce a discriminative common feature space to bridge the source and target views. Two different projection matrices are learned to respectively map the action data from two different views into the common space by simultaneously maximizing the similarity of intra-class samples, minimizing the similarity of inter-class samples and reducing the mismatch between data distributions of two views. In addition, the locality information is incorporated into the discriminant analysis as a constraint to make the discriminant function smooth on the data manifold. Our method is neither restricted to the corresponding action instances in the two views nor restricted to a specific type of feature. We evaluate our approach on the IXMAS multi-view action dataset and N-UCLA dataset. The experimental results demonstrate the effectiveness of our method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 191, 26 May 2016, Pages 286–295
نویسندگان
, , , ,