کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
405970 678051 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Tolerance rough sets for pattern classification using multiple grey single-layer perceptrons
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Tolerance rough sets for pattern classification using multiple grey single-layer perceptrons
چکیده انگلیسی

Tolerance rough sets (TRSs) can operate effectively on continuous attributes for pattern classification. The formulation of a similarity measure plays an important role for TRSs. The existence of certain relationships between any two patterns motivated us to use grey relational analysis (GRA) to implement a similarity measure on the basis of grey single-layer perceptrons (GSLPs). Additive and nonadditive GSLPs can perform additive and nonadditive versions of GRA, respectively. This paper contributes to use a one-class-in-one-network structure to construct the additive/nonadditive GSLP-based TRS for pattern classification by devoting each GSLP to one class. A GSLP-based tolerance class for each pattern can be generated by measuring the similarity for the output from the network. To yield a high classification performance of the proposed TRS-based classifier, a genetic-algorithm-based learning algorithm was designed to determine parameter specifications of the proposed classifier. Experimental results demonstrate that the test results of the proposed nonadditive classifier are better than, or comparable to, those of other known rough-set-based classification methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 179, 29 February 2016, Pages 144–151
نویسندگان
,