کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
405972 678051 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Somatic mutation detection using ensemble of flexible neural tree model
ترجمه فارسی عنوان
تشخیص جهش سومی با استفاده از مجموعه ای از مدل درخت نازک انعطاف پذیر
کلمات کلیدی
مدل درخت عصبی انعطاف پذیر، تکنولوژی توالی نسل بعدی، جهش های اجتماعی بهینه سازی ذرات ذرات، یادگیری گروهی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

The advances on next-generation sequencing technology (NGS) have enabled researchers to detect somatic mutations. Much effect has been devoted to improve accuracy of discovering somatic mutations from tumour/normal NGS data. In this study, flexible neural tree model (FNT) is proposed to detect somatic mutations in tumour-normal paired sequencing data. To improve the classification accuracy further, a new classification ensemble approach based on Radial Basis Function (RBF) neural networks as nonlinear combination function is proposed. The proposed method is applied to real biological dataset from exome capture data and the whole genome shotgun data. Results show that the obtained FNT model has a fewer number of variables with reduced number of input features and with significant improvement in the detection accuracy using the proposed ensemble learning method. Our method also selects 10 import features for somatic mutation detection, which could be used to analyze NGS mutations further.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 179, 29 February 2016, Pages 161–168
نویسندگان
, ,