کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
406040 678056 2015 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fast total-variation based image restoration based on derivative alternated direction optimization methods
ترجمه فارسی عنوان
بر اساس روش های بهینه سازی جهت متناوب مشتق شده سریع تر بر اساس تصویر مبتنی بر تنوع کامل
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

The total variation (TV) model is one of the most successful methods for image restoration, as well as an ideal bed to develop optimization algorithms for solving sparse representation problems. Previous studies showed that derivative space formulation of the image restoration model is useful in improving the success rate in image recovery and kernel estimation performance in blind deconvolution. However, little attentions are paid on the model and algorithm for derivative space based image restoration. In this paper, we study the TV based image restoration (TVIR) by developing a novel derivative space-based reformulation together with an efficient derivative alternating direction method of multipliers (D-ADMM) algorithm. Thanks to the simplicity of the proposed derivative space reformulation, D-ADMM only requires four fast Fourier transform (FFT) operations per iteration, and is much more efficient than the other augmented Lagrangian methods. Numerical experiments show that, D-ADMM can obtain satisfactory restoration result and is much faster than the state-of-the-art TVIR algorithms.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 170, 25 December 2015, Pages 201–212
نویسندگان
, , , ,