کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
406209 678069 2015 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Global Coupled Learning and Local Consistencies Ensuring for sparse-based tracking
ترجمه فارسی عنوان
یادگیری جهانی همگرا و هماهنگی های محلی برای ردیابی مبتنی بر پراکنده
کلمات کلیدی
ردیابی ویژوال نمایندگی انحصاری، یادگیری فرهنگ لغت یادگیری همراه تضمین ثبات
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• We sparsely represent the object in both global and local level for tracking, which aim to explore the object׳s holistic and local information respectively.
• The global dictionary and classifier are coupled learned in our global part.
• We define temporal and spatial consistencies among the object patches, and refine the tracking result by ensuring the consistencies.

This paper presents a robust tracking algorithm by sparsely representing the object at both global and local levels. Accordingly, the algorithm is constructed by two complementary parts: Global Coupled Learning (GCL) part and Local Consistencies Ensuring (LCE) part. The global part is a discriminative model which aims to utilize the holistic features of the object via an over-complete global dictionary and classifier, and the dictionary and classifier are coupled learning to construct an adaptive GCL part. While in LCE part, we explore the object׳s local features by sparsely coding the object patches via a local dictionary, then both temporal and spatial consistencies of the local patches are ensured to refine the tracking results. Moreover, the GCL and LCE parts are integrated into a Bayesian framework for constructing the final tracker. Experiments on fifteen benchmark challenging sequences demonstrate that the proposed algorithm has more effectiveness and robustness than the alternative ten state-of-the-art trackers.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 160, 21 July 2015, Pages 191–205
نویسندگان
, , , , ,