کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
406244 678075 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Data imputation via evolutionary computation, clustering and a neural network
ترجمه فارسی عنوان
محاسبه داده ها از طریق محاسبات تکاملی، خوشه بندی و یک شبکه عصبی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

In this paper, two novel hybrid imputation methods involving particle swarm optimization (PSO), evolving clustering method (ECM) and autoassociative extreme learning machine (AAELM) in tandem are proposed, which also preserve the covariance structure of the data. Further, we removed the randomness of AAELM by invoking ECM between input and hidden layers. Moreover, we selected the optimal value of Dthr using PSO, which simultaneously minimizes two error functions viz., (i) mean squared error between the covariance matrix of the set of complete records and that of the set of total records, including imputed ones and (ii) absolute difference between the determinants of the two covariance matrices. The proposed methods outperformed many existing imputation methods in majority of the datasets. Finally, we also performed a statistical significance testing to ensure the credibility of our obtained results. Superior performance of one of the hybrids is attributed to the power of hybrid of local learning, global optimization and global learning. Both methods resolved a nagging issue of the difficult choice of Dthr value and its dominant influence on the results in ECM based imputation. We conclude that the proposed models can be used as a viable alternative to the existing ones for the data imputation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 156, 25 May 2015, Pages 134–142
نویسندگان
, ,