کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
406364 678081 2015 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nonparametric discriminant multi-manifold learning for dimensionality reduction
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Nonparametric discriminant multi-manifold learning for dimensionality reduction
چکیده انگلیسی

Based on that data sampled from the same class locate on one manifold and those labeled different classes reside on the corresponding manifolds, traditional data classification problem can be reasoned to multiply manifolds identification. Thus in this paper, a dimensionality reduction method titled nonparametric discirminant multi-manifold learning (NDML) is put forward and involved in different manifolds recognition. In the proposed method, a novel nonparametric manifold-to-manifold distance is defined to characterize the separability between manifolds. And then an objective function is modeled to project the original data into a low dimensional space, where the manifold-to-manifold distances can be maximized and manifolds locality will be preserved. Experiments have been carried out on benchmark face data sets with comparisons to some related dimensionality reduction methods such as Unsupervised Discriminant Projection (UDP), Constrained Maximum Variance Mapping (CMVM) and Linear Discriminant Analysis (LDA). The experimental results validate that the proposed NDML can obtain better performance than other methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 152, 25 March 2015, Pages 121–126
نویسندگان
, , ,