کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
406425 678084 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Minimal Learning Machine: A novel supervised distance-based approach for regression and classification
ترجمه فارسی عنوان
ماشین های یادگیری حداقل: یک رویکرد نظارت بر رویکرد مبتنی بر فاصله برای رگرسیون و طبقه بندی
کلمات کلیدی
ماشین های یادگیری، نظارت بر یادگیری، پسرفت، طبقه بندی الگو
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

In this work, a novel supervised learning method, the Minimal Learning Machine (MLM), is proposed. Learning in MLM consists in building a linear mapping between input and output distance matrices. In the generalization phase, the learned distance map is used to provide an estimate of the distance from K output reference points to the unknown target output value. Then, the output estimation is formulated as multilateration problem based on the predicted output distance and the locations of the reference points. Given its general formulation, the Minimal Learning Machine is inherently capable of operating on nonlinear regression problems as well as on multidimensional response spaces. In addition, an intuitive extension of the MLM is proposed to deal with classification problems. A comprehensive set of computer experiments illustrates that the proposed method achieves accuracies that are comparable to more traditional machine learning methods for regression and classification thus offering a computationally valid alternative to such approaches.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 164, 21 September 2015, Pages 34–44
نویسندگان
, , , , ,