کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4064491 1266212 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The EMG activity–acceleration relationship to quantify the optimal vibration load when applying synchronous whole-body vibration
موضوعات مرتبط
علوم پزشکی و سلامت پزشکی و دندانپزشکی ارتوپدی، پزشکی ورزشی و توانبخشی
پیش نمایش صفحه اول مقاله
The EMG activity–acceleration relationship to quantify the optimal vibration load when applying synchronous whole-body vibration
چکیده انگلیسی

Purpose: To date are lacking methodological approaches to individualizing whole-body vibration (WBV) intensity. The aim of this study was: (1) to determine the surface-electromyography-root-mean-square (sEMGRMS)–acceleration load relationship in the vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF), lateral gastrocnemius (LG) muscles during synchronous WBV, and (2) to assess the reliability of the acceleration corresponding to the maximal sEMGRMS. Methods: Twenty-five sportsman voluntarily took part in this study with a single-group, repeated-measures design. All subjects postured themselves in an isometric half-squat during nine trials in the following conditions: no vibrations and random vibrations of different acceleration loads (from 0.12 to 5.72 g). Results: The sEMGRMS were dependent on the acceleration loads in the VL (p = 0.0001), LG (p = 0.0001) and VM (p = 0.011) muscles; while RF was not affected by the acceleration loads (p = 0.508). The comparisons among the sEMGRMS–accelerations relationships revealed a significant difference between the LG and the others muscles (p = 0.001). No significant difference was found between the different thigh muscles (p > 0.05). The intra-class correlation coefficient ranged from 0.87 to 0.99 for the measurements performed on the LG, VL and VM. Conclusions: The sEMGRMS–acceleration relationship in the VL, VM and LG is a reliable test to individualize the WBV intervention.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Electromyography and Kinesiology - Volume 25, Issue 6, December 2015, Pages 853–859
نویسندگان
, , , , ,