کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
406507 678092 2014 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Delay learning architectures for memory and classification
ترجمه فارسی عنوان
تاخیر در یادگیری معماری برای حافظه و طبقه بندی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

We present a neuromorphic spiking neural network, the DELTRON, that can remember and store patterns by changing the delays of every connection as opposed to modifying the weights. The advantage of this architecture over traditional weight-based ones is simpler hardware implementation without multipliers or digital–analog converters (DACs) as well as being suited to time-based computing. The name is derived due to similarity in the learning rule with an earlier architecture called tempotron. The DELTRON can remember more patterns than other delay-based networks by modifying a few delays to remember the most ‘salient’ or synchronous part of every spike pattern. We present simulations of memory capacity and classification ability of the DELTRON for different random spatio-temporal spike patterns. The memory capacity for noisy spike patterns and missing spikes is also shown. Finally, we present SPICE simulation results of the core circuits involved in a reconfigurable mixed signal implementation of this architecture.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 138, 22 August 2014, Pages 14–26
نویسندگان
, , , ,