کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
406738 678106 2013 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Channel selection by Rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Channel selection by Rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG
چکیده انگلیسی

While common spatial pattern may be the most widely used feature for discriminating motor imagery based EEG signals, Rayleigh coefficient maximization enable us to have one more effective. However, such a feature is often deteriorated by redundant electrode channels which may result in low classification accuracy, extra subsequent computational load and difficulty in understanding which part of the brain relates to classification-relevant activity. In this paper, we present a channel selection method to deal with these problems, in which an improved genetic algorithm based on the Rayleigh coefficient feature is conducted to determine the optimal subset of channels. Experiment results on two motor imagery EEG datasets verify that our method is effective in channel selection for classifying motor imagery EEG signals.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 121, 9 December 2013, Pages 423–433
نویسندگان
, , , ,