کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
406772 | 678111 | 2014 | 15 صفحه PDF | دانلود رایگان |

This work explores annealed cooperative–competitive learning of multiple modules of Mahalanobis normalized radial basis functions (NRBF) with applications to nonlinear function approximation and chaotic differential function approximation. A multilayer neural network is extended to be composed of multiple Mahalanobis-NRBF modules. Each module activates normalized outputs of radial basis functions, determining Mahalanobis radial distances based on its own adaptable weight matrix. An essential cooperative scheme well decomposes learning a multi-module network to sub-tasks of learning individual modules. Adaptable network interconnections are asynchronously updated module-by-module based on annealed cooperative–competitive learning for function approximation under a physical-like mean-field annealing process. Numerical simulations show outstanding performance of annealed cooperative–competitive learning of a multi-module Mahalanobis-NRBF network for nonlinear function approximation and long term look-ahead prediction of chaotic time series.
Journal: Neurocomputing - Volume 136, 20 July 2014, Pages 56–70