کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4068688 1604444 2008 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Simulated Radioscapholunate Fusion Alters Carpal Kinematics While Preserving Dart-Thrower's Motion
موضوعات مرتبط
علوم پزشکی و سلامت پزشکی و دندانپزشکی ارتوپدی، پزشکی ورزشی و توانبخشی
پیش نمایش صفحه اول مقاله
Simulated Radioscapholunate Fusion Alters Carpal Kinematics While Preserving Dart-Thrower's Motion
چکیده انگلیسی

PurposeMidcarpal degeneration is well documented after radioscapholunate fusion. This study tested the hypothesis that radioscapholunate fusion alters the kinematic behavior of the remaining lunotriquetral and midcarpal joints, with specific focus on the dart-thrower's motion.MethodsSimulated radioscapholunate fusions were performed on 6 cadaveric wrists in an anatomically neutral posture. Two 0.060-in. carbon fiber pins were placed from proximal to distal across the radiolunate and radioscaphoid joints, respectively. The wrists were passively positioned in a custom jig toward a full range of motion along the orthogonal axes as well as oblique motions, with additional intermediate positions along the dart-thrower's path. Using a computed tomography–based markerless bone registration technique, each carpal bone's three-dimensional rotation was defined as a function of wrist flexion/extension from the pinned neutral position. Kinematic data was analyzed against data collected on the same wrist prior to fixation using hierarchical linear regression analysis and paired Student's t-tests.ResultsAfter simulated fusion, wrist motion was restricted to an average flexion-extension arc of 48°, reduced from 77°, and radial-ulnar deviation arc of 19°, reduced from 33°. The remaining motion was maximally preserved along the dart-thrower's path from radial-extension toward ulnar-flexion. The simulated fusion significantly increased rotation through the scaphotrapezial joint, scaphocapitate joint, triquetrohamate joint, and lunotriquetral joint. For example, in the pinned wrist, the rotation of the hamate relative to the triquetrum increased 85%. Therefore, during every 10° of total wrist motion, the hamate rotated an average of nearly 8° relative to the triquetrum after pinning versus 4° in the normal state.ConclusionsSimulated radioscapholunate fusion altered midcarpal and lunotriquetral kinematics. The increased rotations across these remaining joints provide one potential explanation for midcarpal degeneration after radioscapholunate fusion. Additionally, this fusion model confirms the dart-thrower's hypothesis, as wrist motion after simulated radioscapholunate fusion was primarily preserved from radial-extension toward ulnar-flexion.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: The Journal of Hand Surgery - Volume 33, Issue 4, April 2008, Pages 503–510
نویسندگان
, , , , , ,