کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
406904 678114 2014 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Monotonicity and convergence of asynchronous update gradient method for ridge polynomial neural network
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Monotonicity and convergence of asynchronous update gradient method for ridge polynomial neural network
چکیده انگلیسی

The ridge polynomial neural network is a special type of higher-order neural networks. It not only provides a more efficient and regular architecture compared to ordinary higher-order feedforward networks, but also maintains the fast learning property and powerful nonlinear mapping capability while avoiding the combinatorial increase in the number of required weights. In this paper, a monotonicity theorem and two convergence theorems of the asynchronous gradient method for training the ridge polynomial neural network are proved. They are important to choosing appropriate learning rate and initial weights to perform effective training. To illustrate the theoretical finding, numerical experiments are carried out for 4-dimensional parity problem and function approximation problem. It is shown that the experimental results are in agreement with the proposed theorems.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 129, 10 April 2014, Pages 437–444
نویسندگان
, , , ,