کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
406966 678119 2014 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A multi-objective evolutionary algorithm-based ensemble optimizer for feature selection and classification with neural network models
ترجمه فارسی عنوان
یک بهینه ساز گروهی مبتنی بر الگوریتم تکاملی چند منظوره برای انتخاب ویژگی و طبقه بندی با مدل های شبکه عصبی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

In this paper, we propose a new multi-objective evolutionary algorithm-based ensemble optimizer coupled with neural network models for undertaking feature selection and classification problems. Specifically, the Modified micro Genetic Algorithm (MmGA) is used to form the ensemble optimizer. The aim of the MmGA-based ensemble optimizer is two-fold, i.e. to select a small number of input features for classification and to improve the classification performances of neural network models. To evaluate the effectiveness of the proposed system, a number of benchmark problems are first used, and the results are compared with those from other methods. The applicability of the proposed system to a human motion detection and classification task is then evaluated. The outcome positively demonstrates that the proposed MmGA-based ensemble optimizer is able to improve the classification performances of neural network models with a smaller number of input features.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 125, 11 February 2014, Pages 217–228
نویسندگان
, , ,