کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
407014 678124 2014 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A complex-valued neuro-fuzzy inference system and its learning mechanism
ترجمه فارسی عنوان
یک سیستم استنتاج عصبی-فازی با پیچیدگی و مکانیسم یادگیری آن
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

In this paper, we present a complex-valued neuro-fuzzy inference system (CNFIS) and develop its meta-cognitive learning algorithm. CNFIS has four layers – an input layer with m rules, a Gaussian layer with K rules, a normalization layer with K rules and an output layer with n rules. The rules in the Gaussian layer map the m-dimensional complex-valued input features to a K-dimensional real-valued space. Hence, we use the Wirtinger calculus to obtain the complex-valued gradients of the real-valued function in deriving the learning algorithm of CNFIS. Next, we also develop the meta-cognitive learning algorithm for CNFIS referred to as “meta-cognitive complex-valued neuro-fuzzy inference system (MCNFIS)”. CNFIS is the cognitive component of MCNFIS and a self-regulatory learning mechanism that decides what-to-learn, how-to-learn, and when-to-learn in a meta-cognitive framework is its meta-cognitive component. Thus, for every epoch of the learning process, the meta-cognitive component decides if each sample in the training set must be deleted or used to update the parameters of CNFIS or to be reserved for future use.The performances of CNFIS and MCNFIS are studied on a set of approximation and real-valued classification problems, in comparison to existing complex-valued learning algorithms in the literature. First, we evaluate the approximation performances of CNFIS and MCNFIS on a synthetic complex-valued function approximation problem, an adaptive beam-forming problem and a wind prediction problem. Finally, we study the decision making performance of CNFIS and MCNFIS on a set of benchmark real-valued classification problems from the UCI machine learning repository. Performance study results on approximation and real-valued classification problems show that CNFIS and MCNFIS outperform existing algorithms in the literature.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 123, 10 January 2014, Pages 110–120
نویسندگان
, , ,