کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
407233 678133 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Efficient optimally regularized discriminant analysis
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Efficient optimally regularized discriminant analysis
چکیده انگلیسی

Regularized discriminant analysis (RDA) and its special case uncorrelated linear discriminant analysis (ULDA) are important subspace learning methods proposed recently to handle the small sample size (SSS) problem of linear discriminant analysis (LDA). One important unsolved issue of RDA is how to automatically determine an appropriate regularization parameter without resorting to unscalable procedures like cross-validation (CV). In this paper, we develop a novel efficient algorithm to automatically estimate the regularization parameter based on a geometric interpretation of RDA. We further provide a formal analysis of the proposed method, and show that it is robust to the perturbation in the feature space of the training data. The extensive experiments on various benchmark datasets verify the scalability and effectiveness of our approach, compared with the state-of-the-art algorithms.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 117, 6 October 2013, Pages 12–21
نویسندگان
, ,