کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
407243 678133 2013 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A PSO and pattern search based memetic algorithm for SVMs parameters optimization
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A PSO and pattern search based memetic algorithm for SVMs parameters optimization
چکیده انگلیسی

Addressing the issue of SVMs parameters optimization, this study proposes an efficient memetic algorithm based on particle swarm optimization algorithm (PSO) and pattern search (PS). In the proposed memetic algorithm, PSO is responsible for exploration of the search space and the detection of the potential regions with optimum solutions, while pattern search (PS) is used to produce an effective exploitation on the potential regions obtained by PSO. Moreover, a novel probabilistic selection strategy is proposed to select the appropriate individuals among the current population to undergo local refinement, keeping a well balance between exploration and exploitation. Experimental results confirm that the local refinement with PS and our proposed selection strategy are effective, and finally demonstrate the effectiveness and robustness of the proposed PSO-PS based MA for SVMs parameters optimization.


► A PSO and pattern search based memetic algorithm is proposed.
► Probabilistic selection strategy is proposed to select individuals for local search.
► Local refinement with PS and probabilistic selection strategy are confirmed.
► Experimental results show that the proposed MA outperforms established counterparts.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 117, 6 October 2013, Pages 98–106
نویسندگان
, , ,