کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
407270 678135 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An online generalized eigenvalue version of Laplacian Eigenmaps for visual big data
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
An online generalized eigenvalue version of Laplacian Eigenmaps for visual big data
چکیده انگلیسی

This paper presents a generalized incremental Laplacian Eigenmaps (GENILE), a novel online version of the Laplacian Eigenmaps, one of the most popular manifold-based dimensionality reduction techniques which solves the generalized eigenvalue problem. We evaluate the comparative performance of the manifold-based learning techniques using both artificial and real data. Specifically, two popular artificial datasets: swiss roll and s-curve datasets, are used, in addition to real MNIST digits, bank-note and heart disease datasets for testing and evaluating our novel method benchmarked against a number of standard batch-based and other manifold-based learning techniques. Preliminary experimental results demonstrate consistent improvements in the classification accuracy of the proposed method in comparison with other techniques.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 173, Part 2, 15 January 2016, Pages 127–136
نویسندگان
, , ,