کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
407730 678166 2015 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Ensemble of subset online sequential extreme learning machine for class imbalance and concept drift
ترجمه فارسی عنوان
مجموعه ای از دستگاه یادگیری افراطی متوالی آنلاین برای عدم تعادل کلاس و راندگی مفهوم
کلمات کلیدی
عدم تعادل کلاس، مفهوم رانش دستگاه یادگیری شدید یادگیری آنلاین، محیط های در حال تکرار
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

In this paper, a computationally efficient framework, referred to as ensemble of subset online sequential extreme learning machine (ESOS-ELM), is proposed for class imbalance learning from a concept-drifting data stream. The proposed framework comprises a main ensemble representing short-term memory, an information storage module representing long-term memory and a change detection mechanism to promptly detect concept drifts. In the main ensemble of ESOS-ELM, each OS-ELM network is trained with a balanced subset of the data stream. Using ELM theory, a computationally efficient storage scheme is proposed to leverage the prior knowledge of recurring concepts. A distinctive feature of ESOS-ELM is that it can learn from new samples sequentially in both the chunk-by-chunk and one-by-one modes. ESOS-ELM can also be effectively applied to imbalanced data without concept drift. On most of the datasets used in our experiments, ESOS-ELM performs better than the state-of-the-art methods for both stationary and non-stationary environments.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 149, Part A, 3 February 2015, Pages 316–329
نویسندگان
, , ,